The thermal equation of state of FeTiO3 ilmenite based on in situ X-ray diffraction at high pressures and temperatures

نویسندگان

  • Y. Wang
  • T. sanEhira
  • J. Li
  • B. chEn
چکیده

We present in situ measurements of the unit-cell volume of a natural terrestrial ilmenite (Jagersfontein mine, South Africa) and a synthetic reduced ilmenite (FeTiO3) at simultaneous high pressure and high temperature up to 16 GPa and 1273 K. Unit-cell volumes were determined using energy-dispersive synchrotron X-ray diffraction in a multi-anvil press. Mössbauer analyses show that the synthetic sample contained insignificant amounts of Fe3+ both before and after the experiment. Results were fit to BirchMurnaghan thermal equations of state, which reproduce the experimental data to within 0.5 and 0.7 GPa for the synthetic and natural samples, respectively. At ambient conditions, the unit-cell volume of the natural sample [V0 = 314.75 ± 0.23 (1σ) Å3] is significantly smaller than that of the synthetic sample [V0 = 319.12 ± 0.26 Å3]. The difference can be attributed to the presence of impurities and Fe3+ in the natural sample. The 1 bar isothermal bulk moduli KT0 for the reduced ilmenite is slightly larger than for the natural ilmenite (181 ± 7 and 165 ± 6 GPa, respectively), with pressure derivatives K0′ = 3 ± 1. Our results, combined with literature data, suggest that the unit-cell volume of reduced ilmenite is significantly larger than that of oxidized ilmenite, whereas their thermoelastic parameters are similar. Our data provide more appropriate input parameters for thermo-chemical models of lunar interior evolution, in which reduced ilmenite plays a critical role.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Formation of Two Types of Alumina/Intermetallic Composites based on the Reaction of Ilmenite and Aluminum

Ilmenite is a valuable industrial mineral containing Fe and Ti elements. Two composites with different morphology and composition were produced using the reaction of synthesized ilmenite and aluminum. The molar ratios of 1:2 and 1:8 were selected. The critical temperatures of each molar ratio were determined using the Differential Thermal Analysis (DTA). The heat treatment of the systems ...

متن کامل

Investigation on Mechanism of Cordierite Formation from Nano Silica-Magnesium chloride-Reactive Alumina

Cordierite ceramics are used as refractory materials and kiln furnaces tools due to their very low coefficient of thermal expansion, high corrosion resistance and excellent thermal shock resistance. The aim of the present work was to synthesis of cordierite with raw materials including nano silica, magnesium chloride and reactive alumina. The synthesis procedure is done at solid state. Mechanis...

متن کامل

From 4'-Hydroxy-2,2':6',2''-Terpyridine Complex of Chromium(III) towards Cr2O3 Nanoparticles: Effects of the Calcination Temperature on the Particle Size and Morphology

A new chromium(III) complex containing 4ʹ-hydroxy-2,2ʹ:6ʹ,2ʺ-terpyridine (tpyOH) has been prepared by the reaction of CrCl3. 6H2O with tpyOH in the presence of metallic zinc to afford the new complex [CrCl3(tpyOH)] (1). The complex 1 was used as a suitable precursor for the preparation of Cr2O3 nanoparticles by the simple calcination method at three different annealed temperatures of 400, 600, ...

متن کامل

Ex-situ studies on calcinations of structural, optical and morphological properties of post-growth nanoparticles CeO2 by HRTEM and SAED

Nanocrystalline particles of Cerium Oxide (CeO2) have been prepared by the chemical precipitation method using Cerium nitrate and Urea with a molar ratio of 1:2. The results revealed that the formation of CeO2 fine particles is influenced by molar ratio of metal nitrates to fuel. Well faceted CeO2 nanoparticles, were synthesized by thermal-assisted dissociation ...

متن کامل

Ex-situ studies on calcinations of structural, optical and morphological properties of post-growth nanoparticles CeO2 by HRTEM and SAED

Nanocrystalline particles of Cerium Oxide (CeO2) have been prepared by the chemical precipitation method using Cerium nitrate and Urea with a molar ratio of 1:2. The results revealed that the formation of CeO2 fine particles is influenced by molar ratio of metal nitrates to fuel. Well faceted CeO2 nanoparticles, were synthesized by thermal-assisted dissociation ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010